2020년 9월 3일 목요일

10.04 - 쌍성계와 중력파(Binaries and Gravitational Waves)

10.04 - 쌍성계와 중력파(Binaries and Gravitational Waves) [커세라 강의 페이지]



When two stars are in orbit around one another in a binary system, their positions change periodically in time. Since the gravitation force between an astronomer and a star depends on the distance and the direction to the stars, an observer will feel time changing gravitational force, as the two stars orbit one another. As we watch the stars in orbit, we will see the brightness of the system change as they pass in front of one another as they continue their dance through the universe.

쌍성계는 두 천체의 질량중심으로 서로 공전한다.


To preserve causality, there has to be a delay there has to be a change in the gravitational force that is synchronized with the brightness changes as the locations of the stars change. In other words, the two stars changing positions cause gravitational waves to be emitted by the binary system.

쌍성계의 밝기변화가 두 별이 서로 공전하면서 위치가 바뀌는 것과 서로 인과관계가 있는지 알아보자. [무거운 밀집 천체(중성자별이든 블랙홀이든)가 쌍성을 이루며 돌 때 중력파가 발생하는지 볼 겸]



These gravitational waves will distort spacetime and cause objects far away to be squeezed and stretched periodically. The energy for these distortions is carried away from the binary system by a wave. This means that the gravitational waves carry energy away from the binary, and the binary loses orbital energy.

중력파는 시공간을 왜곡 시키고 천체를 멀리 밀어내기도 하고 끌어들이기도 한다. 이 왜곡으로 인한 파동에 실려 에너지가 빠져나가면 쌍성계는 궤도 유지 에너지를 잃게 된다.

-----------------------------------------------------

The stars in a binary system are moving in ellipses in accordance with Kepler's Laws.

One component of the total energy is their kinetic energy, which is kept in balance by their gravitational potential energy. By summing both the kinetic and gravitational potential, we will obtain the total energy for the system.

쌍성계가 가진 총 에너지는 운동에너지와 중력 포텐셜의 합이다.


This total energy is large when stars are far away from one another,

두별이 멀리 떨어져 있을 때 총 에너지는 크고
 

and smaller when stars are closer to each other.

가까이 있을 때 총에너지는 작다.


This effect is caused by the emission of gravitational radiation. Outgoing waves carry energy away from the binary, causing the stars to fall inwards, orbiting closer and closer to each other, shrinking the orbit of the system, and instead, forming an inward spiral.

두 별의 공전으로 시공간의 주기적 변화는 중력복사를 일으킨다. 중력파는 쌍성계 에너지를 밖으로 내보내게 되어 쌍성계의 총 에너지가 감소하고 별은 안으로 몰린다. 두별은 궤도 유지를 못하고 나선을 그리며 점점 가까워 진다. 마침내 충돌한다.


[이런 모형은 중력파에 의한 에너지 손실을 전제로 한다. 중성자별이나 블랙홀 처럼 아주 무거운 별이 쌍성계를 이룰 때 중력파가 발생한다. 블랙홀은 전자기 복사(핵융합 원료 소모) 따위는 없는 블랙홀 쌍성계에서 에너지를 잃게되는 요인은 중력파 뿐이다.]

--------------------------------------------------

The process of gravitational wave emission and the inward spiral is incredibly slow. Therefore, at any moment in time, we can rearrange Kepler's Third Law to relate the distance between the stars, A, to the time it takes the stars to make one full orbit, P.


--------------------------------------------------

Here, we see P, the orbital period, is equal to the square root of a cubed, divided by the sum of the masses of the two stars.


As the stars slowly spiral inward, their masses do not change, only the distance between the stars change.

질량의 변화 없이 나선을 그리며 안으로 궤도 반경 a가 줄어든다.


----------------------------------------------

In Kepler's Third Law, when A gets smaller, so does the orbital period. The star takes less time to orbit when they're close to one another. The result of the loss of energy through gravitational radiation causes binary star systems to slowly spiral inward. As this process continues, the stars' orbits speed up, and they can come closer together, appearing to spin more rapidly around one another. This slow death spiral will eventually cause the two stars to collide, merging into one big star.

케플러 제3법칙에 따라 궤도 반경이 줄면 공전주기가 빨라진다. 중력복사로 총에너지 손실은  쌍성계가 천천히 나선을 그리게 한다. 두 별이 가까워 질수록 공전주기는 매우 짧아지고 중력 복사는 더욱 세게 나타난다. 마침내 커다란 하나의 별로 합쳐진다.


----------------------------------------------------

This sounds dangerous. How common would such a phenomenon be?

쌍성계의 파국은 얼마나 자주 일어날까?

This death spiral only affects binary stars that are both tiny and extremely close together. In order for two stars in a binary to spiral in and merge within the present age of the universe, so about 13 billion years, the distance between the stars has to be no bigger than the diameter of our sun. That's pretty close.

Typical main sequence stars that are found in binary pairs in our galaxy, are but much further away from each other than one astronomical unit. And if you recall, one astronomical unit is the distance between the sun and the Earth. So these typical stellar binaries are in no danger of undergoing inward death spirals.

항성처럼 핵연료 소실에 따른 전자기 복사 에너지 방출로 인한 질량 감소로 생기는 총 에너지 변화는 매우 느리다. 주계열 별의 수명이 백억년에 달한다는 점을 상기하자. 게다가 두별의 거리가 1천문단위(1AU) 정도 떨어질 때 급격한 충돌을 일으킨다. 따라서 항성으로 이뤄진 쌍성계가 충돌하는 장면을 볼일은 거의 없다.

-------------------------------------------

As an example, the brightest star that we can see in the Earth's night sky is called Sirius, the dog star. It is found in the constellation Canis Major, which is named after the mythical dog that guards Europa from abduction by Jupiter. Sirius is actually a binary system composed of two stars that orbit one another every 50 years. The distance between the two stars is similar to the distance between the sun and the planet Neptune.

큰개자리의 주성 시리우스가 쌍성인데 두별의 공전 주기는 50년이며 거리는 태양에서 해왕성 만큼 떨어져 있다.


Gravitational radiation emitted by the Sirius binary system is so weak that currently, it is impossible for earthlings to detect. The in spiral is so mind bogglingly slow, that it would take 10 zeta-years or 10 to the power of 22 years before the two stars merge.

이 시리우스 쌍성계에서 방출되는 중력복사는 너무나 미미해서 지구에서 감지될 수 없다. 나선궤도의 반경은 아주 찔끔 줄어드는데 [질량 변화가 없을 경우] 충돌 하려면 10^22 년 가량 걸린다. 

This would be long after both stars burn through their nuclear fuel anyway. In fact, the in-spiral of the Sirius binary system takes such a long time that we can ignore the effect of gravitational radiation on this system and all other binaries of main sequence stars.

The only stars that are small enough to allow orbits to be close enough together to emit gravitational waves at observable rates are white dwarfs, neutron stars, and black holes.

--------------------------------------------------------------------
[Neutron Star-Neutron Star Binary]

The first detected binary star system demonstrating the emission of gravitational waves was a binary composed of two inspiraling neutron stars. The system was first observed by Russell Hulse and Joseph Taylor, using the Arecibo Radio Telescope in 1974.

최초로 중력파 방출의 발견은 중성자별 쌍성계였다. 러셀 헐스와 조셉 타일러가 1974년에 아레시보 전파 망원경을 사용해 이 쌍성계를 처음 관측 했다.



It contains a pulsar and a neutron star that orbit one another once every eight hours. Therefore, they are separated by a mere three light seconds, which is similar to the diameter of the sun.

이 쌍성계는 펄사와 중성자별의 조합이었는데 공전주기는 8시간 이었다. 두 별의 거리는 3광초로 태양의 지름과 비슷했다.


Together, the two neutron stars slowly spiral in towards each other, allowing Hulse and Taylor to detect the change by measuring the orbital period of the pair over time. They found that the orbit of the two starts slows by approximately one-tenth of a millisecond every year. This tiny change in orbital period agrees with the predictions of gravitational radiation coming from Einstein's theory of general relativity.

매년 공전 주기가 약 1/10 밀리초 가량 줄어드는 것으로 관측되었는데 이는 두 중성자 별이 천천히 나선을 그리며 접근하기 때문이다.  이런 미세한 (공전주기의) 변화는 아인슈타인의 상대론에서 제기된 중력파의 방출에 의한 에너지 손실과 일치 했다.

Although indirect, this was the first evidence of gravitational radiation demonstrating that gravitational waves do carry energy away from binary systems. This led Hulse and Taylor to be awarded the Nobel Prize in Physics in 1993.

비록 중력복사에 대한 직접적인 관측은 아니었으나 중력파가 쌍성계에서 에너지를 외부로 빼낸다는 사실을 보여준다.[중력파의 존재에 대한 간접적 증거] 헐스와 타일러는 1993년에 이에대한 공헌으로 노벨상을 받았다.

The two neutron stars in the Hulse-Taylor Binary System are radiating gravitational waves so slowly that the stars won't collide for another several billion years. If we're wanting to catch neutron star collision, direct measurements of the source, or the radio telescope just don't cut it. ; the radio telescope just don't caught it

헐스와 타일러가 발견한 중성자별 쌍성계에서 방출된 중력파는 너무 미미해서 두별이 충돌하는데 수십억년이 걸릴 것이다. 만일 중성자 별의 충돌을 관측하려면 전파 망원경이 잡아내지 못한 (매우 정밀한) 직접 관측장비가 필요하다.

So in the years since 1974 scientists around the world have been working on the development of sensitive gravitational observatories that allow us to measure the stretch and squeezing of space time by a gravity wave passing by.

시공간을 줄였다 늘였다 하면서 지금도 우리 주위를 지나가고 있는 중력파를 감지하기 위해 1974년 이래로 전세계 과학자들이 정밀한 중력파 관측장치의 개발에 노력해왔다. 

---------------------------------------------------------------------

Modern gravitational observatories use LASERs to detect gravitational waves. These machines can identify the spiraling of neutron stars at a much later stage. These neutron star binaries have got so close together that they are able to orbit one another more than 25 times per second. Once a pair of neutron star orbit this quickly, they radiate energetic gravitational waves.

최신 중력파 검출기는 레이져를 이용한다. 이 장비는 중성자 별 쌍성계가 충돌 직전의 나선 움직임을 관측할 수 있다. 이 단계의 중성자별 쌍설계의 공전주기는 초당 25회가량 된다. 이정도 주기면 상당히 강력한 중력파가 방출된다.


The energy of the emitted gravitational waves increases more and more until the two stars spiral close enough that they collide and finally merge. A merger like this can happen in an order of minutes.

중력파를 따라 손실되는 에너지가 점점 많아 지면서 두 중성자 별의 나선 충돌은 가속된다. 마침내 충돌은 수분내에 끝난다. [언재 어디서 순식간에 일어나는 충돌을 관측해야 한다.]


-----------------------------------------------------

In August of 2017, such an inspiral of a neutron star binary was detected. In this instance, astronomers also managed to observe the same part of the sky through gamma-ray, X-ray, visible light, and radio waves.



Several seconds after the gravitational wave observatory detected the merger of the neutron star binary, astronomers saw a bright gamma-ray burst in the same direction.


Gamma-ray bursts come in two types. Short bursts that last for less than a second and long bursts that last for closer to a minute.


Long gamma-ray bursts may be associated with collapsars and hypernovae, which might form some black holes.


However, in August, 2017, the astronomers witnessed a short gamma-ray burst right after the merger. This confirmed the suspicion that astronomers had had that short gamma-ray bursts are the result of neutron stars smashing into one another.

2017년 천문학자들이 중성자별 충돌 직후에 짧은 감마선 분출을 관측했다. 이는 중성자 별이 충돌한 직후 짧은 감마선 분출이 있을 거라는 예상을 확인해 주는 것이었다.



The smashing together of neutron stars initiates nuclear reactions that allow the formation of elements more massive than those formed in stars. That is elements that are heavier than iron.

두 중성자별의 충돌로 철보다 무거운 원소들을 생성하는 핵융합이 시작된다.


This includes elements such as gold, platinum, and heavy radioactive elements. So the next time you wonder where the gold for jewelry comes from, some large fraction of your ring or necklace is the debris of a collision of two neutron stars.

이렇게 생성되는 원소들로는 금, 백금 그리고 더 무거운 핵물질 원소들이다. 우리가 가진 귀금속이 바로 두 중성자별의 충돌한 결과다.


These heavy elements can be blown off into space and recycled into the next generation of stars and planets.

이 무거운 원소들이 멀리 퍼져나가 새로운 별이나 행성의 재료가 될 것이다.


But what is made at the core of this merger? When two neutron stars merge, there are two possible outcomes for the object left behind. The remnant of the merger could either be a more massive neutron star, or it could become a newly formed black hole. The outcome of the merger depends on the mass that remains.

충돌의 잔해는 더 큰 중성자 별이 되거나 블랙홀이 될 수도 있다. 그 결과는 질량에 달렸다.


-----------------------------------------

Neutron stars have a maximum allowed mass. This maximum mass is not exactly known, but it's somewhere between two and three times the mass of our sun. Astronomers commonly state that the maximum mass is three solar masses for ease of definition. But the largest mass is probably a bit smaller than this. If we knew this mass more accurately this would be helpful when we try to distinguish between neutron stars and black holes.

중성자 별이 될 수 있는 한계는 정확하지 않으나 태양의 3배정도 질량이다. 이 중성자 별의 한계질량을 정확히 안다면 블랙홀과 중성자별을 확실히 구분 할 수 있을 것이다.

When the two neutron stars merge, if the total merged mass is smaller than the maximum neutron star mass, then we will end up with a neutron star. But if the mass is too high, the neutron star will be unstable and will collapse to form a black hole.

--------------------------------------------------------------------
[Neutron Star-Black Hole Binary]

The collapse of a neutron star into a black hole should also create gravitational waves. These would be more difficult to detect. There was no evidence for waves like these in 2017 neutron star merger. Unfortunately, this means that we just don't know whether the collision resulted in a larger neutron star or a new black hole. This is an example when no detection does not answer the question.

중성자 별이 블랙홀과 충동해도 중력파가 생긴다. 이런 중력파를 검출하기는 더 어렵다. [중성자 별끼리 충돌할 대 감마선 분출을 동반한다.] [표시가 없는] 중력파를 가지고 무엇이 충돌했는지 알 수 없다. 2017년 중성자별 충돌도 중력파로는 알 수 없었다. 아쉽게도 충돌의 결과가 블랙홀의 탄생이라는 확실한 증거는 아니다.


The total mass of the merged objects is 2.7 solar masses, and is very likely that this is larger than the maximum allowed neutron star mass. However, we don't yet have any evidence that tells us that a black hole formed.

(예를들어) 충돌로 생긴 천체의 질량이 태양의 2.7배라면 중성자별 일 수도 블랙홀 일 수도 있다는 것이다.

At present, there has been no observable evidence for a binary system composed of a neutron star and a black hole. But there is no reason why such a binary shouldn't exist. Assuming that they do exist, there is also no reason why they should not also be able to in spiral and merge.

현재로선 블랙홀과 중성자별로 구성된 쌍성계가 있다는 관측된 증거도 없다. 그렇다고 그런 쌍성계가 없다고 할 수도 없다. 그런 쌍성계가 존재 한다 쳐도 나선형 충돌을 할지 안할지도 알 수 없다.

----------------------------------------------

Let's imagine what would happen if a black hole merges with a neutron star. Astronomers have tried to model this, and we think it would look very different to that of two neutron stars merging.

블랙홀과 중성자별의 충돌을 상상해보자.

While the neutron star and the black hole start to inspiral, it becomes clear that in the end, the neutron star will be ripped apart.

중성자별이 나선 궤도로 블랙홀에 접근하다 깨져 버리고 (조석력은 강력하다!),

It will then fall in towards the black hole, and be swallowed by the black hole's event horizon, and the black hole will grow.

블랙홀의 사건 지평선으로 빨려 들어갈 것이다. 중성자 별을 먹은 블랙홀은 성장한다.

Although it is quite possible that such a merger would also produce a gamma-ray burst and initiate nuclear reactions that form heavy elements.

이 경우에도 감마선 분출이 있을 수 있고 무거운 원소를 생산하는 핵융합도 일어날 수도 있다. [하지만 관측된 증거는 없다.]

If a merger of a neutron star and black hole is ever detected, it will be big news and we'll have to update this course.

중성자 별과 블랙홀의 충돌이라는 확실한 증거가 검출되기만 한다면 커다란 뉴스가 될 것이다. [중성자 별이 산산조각 날때 무슨일이?]

--------------------------------------------------------------------
[Black Hole-Black Hole Binary]

When a binary system consists of two black holes, they will also inspiral towards each other due to the emission of gravitational waves and ultimately merge together. The end state of two black holes merging will be a bigger black hole.


As the two black holes merge, for a brief period of time, the black hole is a highly distorted mess. But the no-hair theorem tells us that the normal state for a rotating black hole is a smooth event horizon.


During the final merger stage, the distorted black hole emits gravitational radiation in a process called Quasi-Normal Ringdown. Where all the bumps and wiggles gets moved out. The final resulting black hole is a Kerr Black Hole(=Rotating Black Hole), of the sort we looked at earlier in the course.

The first black hole merger was detected in 2015, and by the end of 2017 when we are filming this module, five black hole mergers have been measured. So by the time you take this course, more of these types of mergers will probably have been detected. And they might eventually seem commonplace.

2015년 처음 블랙홀 충돌이 발견된 이래 2017년 현재 5개가 더 관측됬다. 앞으로 흔히 발견될 것이다.

---------------------------------------------------------------------------

The data from black hole and neutron star mergers helps astrophysicists understand the distribution of black holes and neutron star sizes in our galaxy. But also, the wider universe. The merger of neutron stars can produce either a new neutron star, or a new black hole. When black holes merge, they form heavier.


This diagram summarizes the black hole food chain as we know it at the end of 2017.

위 도표는 2017년 말까지 우리가 알고 있는 블랙홀 먹이사슬이다.

If you look towards the bottom of the diagram, between one and two solar masses, there are a collection of yellow circles that represent neutron stars with known masses. In the middle of all the neutron stars, the two orange balls joined with an arrow that represents the two neutron stars that merged in August 2017. Since there isn't enough evidence to determine whether the neutron star became a neutron star or a black hole, the new object is represented with a question mark.

맨 아래 노란색은 질량이 알려진 중성자별들. 중간의 오랜지색은 2017년에 중성자별 둘이 합쳐져 뭔가 생성했는데 중성자별인지 블랙홀인지 알 수 없다.

If we move higher up the mass scale, between around 5 and 20 solar masses, there are a collection of purple circles representing known stellar mass black holes in x-ray binaries.

보라색은 X선 쌍성계를 이루고 있는 태양질량의 5배에서 20배에 달하는 항성급 블랙홀들이다.

Finally, at the top of the diagram, there are blue circles, which are joined by arrows that show the merger of lighter black holes, to form heavier black holes.

맨 윗층의 청색은 블랙홀 들로서 가벼운 블랙홀이 합쳐져 무거운 블랙홀이 된다.

Some of these black hole mergers start off with black holes that are about 30 solar masses, and create black holes that add up to about 60 to 70 solar masses. This is really exciting, as we can now witness the merger and growth of black holes. Perhaps, this process might lead to the formation of intermediate mass black holes.

아마도 중간급 블랙홀이 어떻게 생성되는지 보여줄 지도 모른다.

-----------------------------------------------------------

If we now consider the other end of the black hole mass spectrum by this, I mean, let's switch up to the size of galaxies. Observations of galaxies suggest that almost all galaxies have a supermassive black hole at their center.

Astronomers have been observing galaxies for a long time. While we're used to seeing pretty pictures of spirals and swirls, astronomers have discovered that things can also get a bit messy. This is because galaxies can also collide.


When galaxies collide, the black holes can form a binary system, which will emit gravitational waves, inspiral and merge. The merger of supermassive black holes hasn't yet been observed, but hopefully, they will one day soon.

중심에 거대 블랙홀을 가진 은하끼리 충돌도 나선궤도를 그리며 충돌할 테고 이과정에서 중력파가 나올 것이다. [거대한 중력파 일텐데] 아직 검출되지는 않았다. 조만간 검출 되리라 예상한다. [이미 광학과 X선 관측으로 은하 충돌 장면이 관측되고있다.]
 


Ground based gravitational wave observatories are responsible for the direct detection of merging black holes in a stellar mass range. But feature orbiting space-based gravitational wave detectors are needed before we can detect the merger of supermassive black holes.

---------------------------------------------

We have discussed a lot about the detection of gravitational waves up to this point, but how do these detectors actually measure the effect of a passing gravitational wave? That is next on our agenda. So let's find out now.

-----------------------------------------------------------------
[인터뷰] [커세라 페이지]
Where does the gold in your ring come from?
Interview with Dr. Rodrigo Fernandez, Professor at the University of Alberta

This ring is made of gold. Why gold? We think that the gold among those other heavy elements comes from collisions of the neutron stars that astronomers called neutron star mergers. Very recently a few months ago it was announced that the first neutron star merge was observed in gravitational waves, and in photons by the like of collaboration and a number of other observers in the world, and the signature of the formation of gold and other heavy elements called the r-process was detected in the signal. Okay. So, we have evidence that a significant fraction of that the gold in the Universe came from these types of events. Now, whether this golden in my ring comes from one close by merger, or for many of them, and then they go and mix up somehow we don't know. But it could be just one that happen not so far in the past.

-----------------------------------------------------

댓글 없음:

댓글 쓰기